Case report

Massive pancreatic pseudocyst with portal vein fistula: Case report and proposed treatment algorithm

Thomas S.C. Ng, Holly Rochefort, Christopher Czaplicki, Pedro Teixeira, Lin Zheng, Lea Matsuoka, Jacques Van Dams, Sophoclis P. Alexopoulos

* Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
b Division of Hepatobiliary, Pancreatic and Abdominal Organ Transplant Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
c Division of Gastroenterology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

d, * Visualization & Interface Design Innovation (VIDI) Research Group, University of California, Davis, Davis, CA, USA

A R T I C L E I N F O

Article history:
Available online 28 November 2014

Keywords:
Fistula
Pancreatic pseudocyst
Pancreatitis
Portal vein thrombosis
Cyst gastrostomy
Hemorrhage

A B S T R A C T

Pancreatic pseudocyst is a relatively common occurrence resulting from acute or chronic pancreatitis. However, a rare subset of these patients present with a pseudocyst fistulizing into the portal vein. We present the case of a 58 year-old woman with a rapidly expanding pancreatic pseudocyst with portal venous fistulization causing portal vein thrombosis, in addition to biliary and duodenal obstruction. The patient underwent surgical decompression with a cyst-gastrostomy and was well until one week postoperatively when she experienced massive gastrointestinal hemorrhage leading to her death. A review of the literature is presented and a treatment algorithm to manage patients with pancreatic pseudocyst to portal vein fistula is proposed.

Copyright © 2014, IAP and EPC. Published by Elsevier India, a division of Reed Elsevier India Pvt. Ltd. All rights reserved.

Introduction

Pancreatic pseudocyst is a complication of acute and chronic pancreatitis. In rare cases, patients with pancreatic pseudocysts present with fistulae into the portal vein. Only 18 cases of this condition have been reported in the English literature to date [1–18]. The clinical presentation of pancreatic pseudocyst-portal vein fistula (PP-PV) varies, ranging from symptomatic abdominal pain [3,4,6,16,17] to portal hypertension due to thrombosis [8,10,11,14], systemic lipolysis [1,2,5,7,12], septic shock [9], and death [12,5,9]. We present a patient with a rapidly enlarging pancreatic pseudocyst with portal vein fistula causing biliary and duodenal obstruction who underwent cyst-gastrostomy. In addition to a review of the literature, a treatment algorithm is proposed.

Case report

The patient was a 58 year-old woman with a history of pancreatic divisum and hypothyroidism, who had undergone laparoscopic cholecystectomy for gallstone pancreatitis four years prior. She was subsequently admitted to an outside hospital for episodes of recurrent acute pancreatitis. Computed tomography (CT) and magnetic resonance imaging (MRI) revealed a new 6.7 × 4.2 × 8.2 cm pancreatic pseudocyst (Fig. 1). No surgical intervention was performed at the time because the cyst wall was deemed immature. The patient improved with conservative management and was subsequently discharged home. However, she returned to the outside hospital with recurrent abdominal pain, nausea and vomiting and imaging revealed that the pseudocyst had enlarged to 7.1 × 4.4 × 11.2 cm.

On transfer to our institution, physical exam was notable for mild jaundice and a tender, palpable mass in the mid-epigastric region. Laboratory test results demonstrated elevated alkaline phosphatase (ALP: 997, normal values: 38–126 U/L), total bilirubin (T.bili: 5.2, normal values: 0.2–1.3 mg/dL), transaminases (AST/ALT: 133/120, normal values: 5–35/7–56 U/L), amyrase (594, normal values: 30–110 U/L) and lipase (672, normal values: 7–60 U/L). MRI/magnetic resonance cholangiopancreatography (MRCP) of the abdomen revealed three pseudocysts with dimensions of 10 × 10 × 16 cm, 5.5 × 4.5 × 3.8 cm and 2.8 × 5.5 cm (Fig. 1). Although the pancreatic duct was seen in the tail of the pancreas, the head and body were obscured by the cysts. Subsequent volume

* Corresponding author. Division of Hepatobiliary, Pancreatic, and Abdominal Organ Transplant Surgery, 1510 San Pablo Street, Suite 200, Los Angeles, CA 90033, USA. Tel.: +1 323 442 5908; fax: +1 323 442 5872.
E-mail address: Sophoclis.Alexopoulos@med.usc.edu (S.P. Alexopoulos).
rendering of the images revealed that these cysts were in communication and formed a single cyst (Fig. 2). Direct communication between the main portal vein and pseudocyst was observed with similar signal intensity of the pseudocyst fluid and that within the thrombosed portal vein. Doppler ultrasonic (DUS) demonstrated no blood flow in the portal vein (Fig. 3). Both intrahepatic and extrahepatic bile ducts were dilated to the level of the largest pseudocyst. An endoscopic retrograde cholangiopancreatography (ERCP) was performed, confirming external compression and obstruction. Distortion and narrowing of the duodenal lumen due to the pseudocyst prevented stent insertion during the ERCP procedure. An open cyst-gastrostomy was planned to relieve the external compression of both the biliary system and the duodenum.

Prior to surgery, worsening abdominal pain, rising white blood cell count and progressive jaundice were concerning for development of cholangitis. She underwent percutaneous transhepatic biliary catheter (PTC) drainage, with immediate improvement of her obstructive symptoms.

An open cyst-gastrostomy was performed. Brownish, turbid fluid was aspirated from the cyst and large amounts of old blood clot and necrotic debris were evacuated. Consistent with MRI and ultrasound findings, no evidence of active bleeding from the pseudocyst or compromise of the pseudocyst wall was noted. No attempt was made at a pancreatic resection due to the significant portal hypertension, inflammation, and mass effect of the giant pseudocyst.

Postoperatively, the patient’s obstructive symptoms improved and her hemoglobin remained stable. Follow-up cholangiography via the PTC showed decreased mass effect of the pseudocyst and resolving biliary dilatation.

On postoperative day seven, the patient presented with sudden onset of hematochezia, hematemesis and hemodynamic instability resulting in immediate transfer to the intensive care unit. The patient was intubated for airway protection and an emergent esophagogastroduodenoscopy was performed which showed bright red blood in the stomach and blood clots and fibrotic material at the site of the cyst-gastrostomy. No active bleeding was identified in the stomach or duodenum. The patient required massive blood transfusion. Upon arrival to the interventional radiology suite for diagnosis and possible embolization, the patient experienced refractory hypotension and cardiac arrest. Despite emergency resuscitative efforts, the patient expired.

Post-mortem examination confirmed chronic pancreatitis with presence of a large pseudocyst. The portal vein had perforated into the pseudocyst, with over a liter of serosanguineous fluid and fresh blood clots present in the cyst, gastric lumen and bowel.

Discussion

Fistulization into the portal vein is a rare sequela of pancreatic pseudocyst formation. Eighteen cases of PP-PV have been reported to date in the literature [1–18] and are summarized in Table 1. While invasive procedures such as operative exploration [7,12], percutaneous [4] or endoscopic pancreatography [6,10,11,14–18] and angiography [3,4,8,10,16,18] have been used to diagnose this condition in the past, non-invasive imaging using CT, MRI or MRCP has recently been shown to be effective for diagnosis [13,15], and clearly demonstrated PP-PV in our patient. Although three dimensional rendering was necessary to demonstrate that the multiple pseudocysts initially seen on MRI were in fact connected and forming a single cyst. In the future, visually accurate [19,20] volume rendering may be helpful to both radiologists and surgeons for diagnosis and pre-operative planning.

The mechanism for fistulization remains poorly understood. However, it is believed that the high concentrations of pancreatic enzymes within the pseudocyst erode into adjacent structures [8]. Though fistulization has been hypothesized to occur after portal vein thrombosis (PVT) [8], several reports demonstrate pseudocyst fistulization in the absence of PVT [1,5,7,12]. Portal vein thrombosis may result from mass effect and compression by the pseudocyst along with associated peri-pseudocyst inflammation [21]. Alternatively, fistulization and release of digestive enzymes into a patent portal vein may directly cause intravascular thrombosis [15].

Serious complications of PP-PV noted in the literature include septic shock [9], systemic inflammation [15], lipolysis [1,2,5,7,12], hemorrhage [8], and death [1,2,5,9]. In particular, the presence of systemic lipolysis is associated with a high mortality rate. Clinically, patients present with arthralgia and purpuric nodules on the extremities. Biopsy of these nodules demonstrates subcutaneous lipolytic necrosis. Three of the five patients with systemic lipolysis documented by pathology died leading to an associated mortality rate of 60% [1,2,5]. In contrast, one mortality [9] was documented in the remaining 13 patients, for a mortality rate of 7.7%.

The cause of the systemic lipolysis is unclear [2,22]. It is hypothesized that the massive release of pancreatic enzymes into the systemic circulation through the fistula may be responsible. Systemic lipolysis only occurred in PP-PV patients with portal vein patency. This makes pathophysiologic sense as we hypothesize that systemic lipolysis requires acute decompression and rapid release of large amounts of pancreatic enzymes into the portal circulation.

Fig. 1. Time evolution of the pancreatic pseudocyst. A) Computed tomography (CT) of the abdomen 4 weeks prior to current admission showed the pseudocyst in the epigastric region (white arrow). B) CT of the abdomen two weeks prior to current admission showed continued growth of the pseudocyst (white arrow). C) Magnetic resonance cholangiopancreatography (MRCP) showed continued enlargement of the pseudocyst (white arrow). D) MRCP at a posterior location compared to the slice shown in C). Connection of the cyst with the portal vein can be seen (dotted arrow). Debris found on exploration to be clotted blood is also seen inside the pseudocyst. (Scale bars = 5 cm).
Fig. 2. Three dimensional volume rendering of pancreatic pseudocyst with portal venous fistula. A) Three dimensional volume rendering of the portal vein, fistula and cyst (dark blue) in the context of the venous system around the hepatobiliary system. Other tissues have been removed to facilitate visualization. Portal vein is highlighted by the black arrow. Regions of magnification of the fistula B) and cystic connections C) are shown. Although originally read as three separate cysts, post-hoc rendering showed that all the cystic structures were in communication and formed a single cyst (dotted arrow).

Fig. 3. Ultrasound of pancreatic pseudocyst and portal vein fistula. Images acquired two days after those presented in Fig. 1. A) The connection between the pseudocyst and portal vein is clearly seen (arrow). B) From a different angle, echogenic material filling both portal vein and the pseudocyst can be seen. C) Doppler ultrasound inside the portal vein demonstrated no flow through its lumen.
This rapid release of highly concentrated pancreatic fluid is seldom found in other pancreatic disorders which may explain why the majority of patients with biochemical pancreatitis do not experience systemic lipolysis.

The goal of treatment in PP-PV is to exclude pseudocyst communication with the portal circulation while preventing continued expansion of the cyst. Currently, this is accomplished with surgical or endoscopic interventions. The first step in evaluating a patient with PP-PV fistula is to assess the patency and relationship of the portal vein with the pseudocyst. In patients with a patent portal vein communicating with a pancreatic pseudocyst a trans-hepatically inserted covered portal vein stent may be used to first step in evaluating a patient with PP-PV fistula is to assess the patency and relationship of the portal vein with the pseudocyst. In patients with a patent portal vein communicating with a pancreatic pseudocyst a trans-hepatically inserted covered portal vein stent may be used to temporize the situation until definitive treatment. Identifying the relationship of the pancreatic duct with the pseudocyst is crucial in guiding the ultimate therapy. Surgical treatment requires re-establishment of pancreatic duct-enteric drainage and may include pancreatectomy. Several case reports described partial pancreatectomy and creation of a pseudocyst-enterostomy or pancreaticoenterostomy for treatment and drainage [3,7,8,12,14]. Endoscopic therapy attempts pseudocyst exclusion utilizing a pancreatic duct stent and may include percutaneous pseudocyst drainage. This approach was successful in the management of two patients [16,17]. In general, the presence of complicating factors such as biliary or enteric obstruction, hemorrhage, or systemic lipolysis resulted in surgical intervention with non-operative management reserved for stable patients [6,10,11,13].

Treatment of subcutaneous lipolysis resulting from pancreatic disorders has ranged from medical therapy to reduce inflammation and infection at the necrotic sites [12] to surgical therapy to prevent the systemic release of pancreatic enzymes [23,24]. The two patients with PP-PV and subcutaneous lipolysis who survived both underwent pancreatectomy with direct repair of the portal vein-pseudocyst communication [7,12].

Given the biliary and duodenal obstruction present in our patient, as well as the increasing volume of the pseudocyst with portal vein thrombosis surgical management was indicated. Our goal was

Table 1
Summary of cases presenting with pancreatic pseudocyst — portal vein fistula.

<table>
<thead>
<tr>
<th>Case</th>
<th>Age</th>
<th>Sex</th>
<th>Presentation</th>
<th>Mode of diagnosis</th>
<th>P-PD (Y/N)</th>
<th>Sepsis (Y/N)</th>
<th>PVT (Y/N)</th>
<th>SL (Y/N)</th>
<th>Therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>This case</td>
<td>58</td>
<td>F</td>
<td>Abd pain, n/v, jaundice Fever, tachycardia, AMS, painful BLE blue papules, painful red papules</td>
<td>CT, MIRI, MRCP, DUS Autopsy</td>
<td>NR</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Cyst-gastrostomy</td>
<td>Deceased</td>
</tr>
<tr>
<td>Zeller (1)</td>
<td>57</td>
<td>M</td>
<td>Abd pain, fever, tachycardia, AMS, painful BLE blue papules, painful red papules</td>
<td>Autopsy</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>Y</td>
<td>Supportive</td>
<td>Deceased</td>
</tr>
<tr>
<td>Lee (2)</td>
<td>63</td>
<td>M</td>
<td>Abd pain, Polycystic artheritis, painful red papules</td>
<td>Autopsy</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>Y</td>
<td>Supportive</td>
<td>Deceased</td>
</tr>
<tr>
<td>Pedrazzoli (3)</td>
<td>30</td>
<td>M</td>
<td>Abd pain, Polycystic artheritis, painful red papules</td>
<td>CT, US, celiac angiography and operation</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Splenectomy, partial left pancreatectomy, Roux-en-Y pancreaticojejunostomy and external drainage of the portal tree</td>
<td>Survived</td>
</tr>
<tr>
<td>Takayama (4)</td>
<td>52</td>
<td>M</td>
<td>Abd pain</td>
<td>Percutaneous pancreatic ductogram and intrahepatic angiography Autopsy</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Surgical drainage of ascites</td>
<td>Survived</td>
</tr>
<tr>
<td>Sorensen (5)</td>
<td>60</td>
<td>M</td>
<td>Abd pain, n/v, difficulty in walking, elevated lipase</td>
<td>ERCP</td>
<td>Y</td>
<td>NR</td>
<td>N</td>
<td>Y</td>
<td>Supportive</td>
<td>Deceased</td>
</tr>
<tr>
<td>Van Steenbergen (6)</td>
<td>38</td>
<td>M</td>
<td>Abd pain, GI hemorrhage</td>
<td>Operative exploration</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Pancreaticoduodenectomy</td>
<td>Survived</td>
</tr>
<tr>
<td>Proacci (8)</td>
<td>47</td>
<td>F</td>
<td>Abd pain, Fever, mental status change, polyarthritis</td>
<td>CT and CT-guided transhepatic angiography Autopsy</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>NR</td>
<td>Supportive</td>
<td>Survived</td>
</tr>
<tr>
<td>Skarsgard (9)</td>
<td>49</td>
<td>M</td>
<td>Dyspnea, Abd pain, ascites, Fever, polyarthritis</td>
<td>US, CT, angiography, ERCP DUS, CT, ERC</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Supportive</td>
<td>Survived</td>
</tr>
<tr>
<td>Chang (11)</td>
<td>66</td>
<td>M</td>
<td>Dyspnea, Abd pain, fever, chills, ascites, Fever, polyarthritis</td>
<td>Operative exploration</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Supportive</td>
<td>Survived</td>
</tr>
<tr>
<td>Hammar (12)</td>
<td>29</td>
<td>M</td>
<td>Fever, polyarthritis</td>
<td>DUS, CT, MRI</td>
<td>N</td>
<td>NR</td>
<td>Y</td>
<td>NR</td>
<td>Pancreatectoenterostomy</td>
<td>Survived</td>
</tr>
<tr>
<td>Riddell (13)</td>
<td>42</td>
<td>F</td>
<td>Ascites, pulmonary embolism</td>
<td>ERCP</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Pancreatectoenterostomy</td>
<td>Survived</td>
</tr>
<tr>
<td>Yoon (14)</td>
<td>43</td>
<td>M</td>
<td>Anorexia, Abd pain, Abd distension</td>
<td>CT, ERCP, MRI</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Pancreatectoenterostomy</td>
<td>Survived</td>
</tr>
<tr>
<td>Dawson (15)</td>
<td>61</td>
<td>M</td>
<td>Abd pain, n/v, Auckland Hospital</td>
<td>US, CT, CT-guided pancreatic duct stent ERCP</td>
<td>NR</td>
<td>Y</td>
<td>P</td>
<td>N</td>
<td>Supportive</td>
<td>Survived</td>
</tr>
<tr>
<td>Noh (16)</td>
<td>54</td>
<td>M</td>
<td>Abd pain, Auckland Hospital</td>
<td>CT, CT-guided pancreatic duct stent ERCP</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Supportive</td>
<td>Survived</td>
</tr>
<tr>
<td>Horino (17)</td>
<td>57</td>
<td>M</td>
<td>Abd pain</td>
<td>US, CT, ERC</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Roux-en-Y pancreaticojejunostomy</td>
<td>Survived</td>
</tr>
<tr>
<td>Raza (18)</td>
<td>45</td>
<td>M</td>
<td>Abd pain, ascites</td>
<td>Tubogram, angiography, ERCP</td>
<td>Y</td>
<td>N</td>
<td>P</td>
<td>N</td>
<td>Endoscopic pancreatic-duodenostomy insertion, followed by Roux et Y pancreaticojejunostomy 6 months later to manage duct stricture</td>
<td>Survived</td>
</tr>
</tbody>
</table>

Abd, abdominal; AMS, altered mental status; BLE, bilateral lower extremities; CT, computed tomography; DUS, doppler ultrasound; ERCP, endoscopic retrograde cholangiopancreatography; ETOH, ethanol; F, female; M, male; MRCP, magnetic resonance cholangiopancreatography; MRI, magnetic resonance imaging; NR, not recorded; n/v, nausea/vomiting; P-PD, pseudocyst-pancreatic duct connection; PVT, portal vein thrombosis; SL, systemic lipolysis; US ultrasound.
to re-establish enteric continuity utilizing the stomach. Due to the massive size of the cyst and the portal hypertension present, no attempt at pancreatic resection was made. In our case, we hypothesize that breakdown of the thrombus by pancreatic enzymes resulted in recanalization of portal vein blood flow and spleno-mesenteric decompression into the pseudocyst cavity. The high pressure gradient and portal hypertension may have aided recanalization and exacerbated bleeding into the cyst, which resulted in hemorrhagic shock and death.

In light of our experience with this patient and after review of the literature, we propose a simple algorithm for the management of PP-PV (Fig. 4). Initial workup of the patient with suspected PP-PV should include non-invasive imaging. DUS should be done to evaluate portal venous system patency. Either non-invasive imaging or ERCP should be used to identify the relationship between the pseudocyst and pancreatic duct. Patients with a patent portal vein should be considered for portal vein stent as long as there is no cavernous transformation, followed by pancreatectomy with en bloc pseudocyst resection. Additionally, those with systemic lipolysis should undergo emergent surgical intervention to exclude the pseudocyst. Patients with portal vein thrombosis and communication between the pseudocyst and pancreatic duct should be evaluated for endoscopic treatment including pancreatic duct stent placement and percutaneous pseudocyst drainage as needed. Surgical decompression of the pseudocyst with re-establishment of pancreatic-enteric drainage is recommended when endoscopic therapy is contraindicated or ineffective. The potential need for pancreatectomy should be considered during the surgical planning process. Patients with an excluded pseudocyst without pancreatic ductal communication may undergo percutaneous drainage or observation dependent on the symptomatology.

In summary, PP-PV is a rare but highly morbid condition, presenting challenges in diagnosis and treatment. We have presented a patient with a rapidly expanding pseudocyst with direct fistulization to, and subsequent thrombosis of, the portal vein. The patient’s condition was complicated by duodenal and biliary obstruction, necessitating surgical decompression via cyst-gastrostomy. Delayed acute recanalization of the portal venous circulation into the pseudocyst resulted in uncontrolled hemorrhage and death. This case highlights the potential complications associated with surgical decompression of fistulized pancreatic pseudocysts. These complications should be considered in the future management of similar patients and may be prevented with early intervention during the treatment course.

Acknowledgments

We thank Drs. Christina Lee and Kwan-Liu Ma for discussions about the radiographical images and image rendering respectively.

References

